Computing with Time: From Neural Networks to Sensor Networks
نویسندگان
چکیده
منابع مشابه
Computing with Time: From Neural Networks to Sensor Networks
This article advocates a new computing paradigm, called computing with time, that is capable of efficiently performing a certain class of computation, namely, searching in parallel for the closest value to the given parameter. It shares some features with the idea of computing with action potentials proposed by Hopfield, which originated in the field of artificial neuron networks. The basic ide...
متن کاملComputing with Time: From Neural Networks to Sensor Networks Short Title: Computing with Time
This article advocates a new computing paradigm, called computing with time, that is capable of efficiently performing a certain class of computation, namely, searching in parallel for the closest value to the given parameter. It shares some features with the idea of computing with action potentials proposed by Hopfield, which originated in the field of artificial neuron networks. The basic ide...
متن کاملComputing with Time: From Neural Networks to Wireless Networks
This article advocates a new computing paradigm, called computing with time, that is capable of efficiently performing a certain class of computation, namely, searching in parallel for the closest value to the given parameter. It shares some features with the idea of computing with action potentials proposed by Hopfield, which originated in the field of artificial neuron network. The basic idea...
متن کاملFINITE-TIME PASSIVITY OF DISCRETE-TIME T-S FUZZY NEURAL NETWORKS WITH TIME-VARYING DELAYS
This paper focuses on the problem of finite-time boundedness and finite-time passivity of discrete-time T-S fuzzy neural networks with time-varying delays. A suitable Lyapunov--Krasovskii functional(LKF) is established to derive sufficient condition for finite-time passivity of discrete-time T-S fuzzy neural networks. The dynamical system is transformed into a T-S fuzzy model with uncertain par...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Computer Journal
سال: 2007
ISSN: 0010-4620,1460-2067
DOI: 10.1093/comjnl/bxm109